227 research outputs found

    Raman microscopic analysis of dry-surface biofilms on clinically relevant materials

    Get PDF
    Moist/hydrated biofilms have been well-studied in the medical area, and their association with infections is widely recognized. In contrast, dry-surface biofilms (DSBs) on environmental surfaces in healthcare settings have received less attention. DSBs have been shown to be widespread on commonly used items in hospitals and to harbor bacterial pathogens that are known to cause healthcare-acquired infections (HAI). DSBs cannot be detected by routine surface swabbing or contact plates, and studies have shown DSBs to be less susceptible to cleaning/disinfection products. As DSBs are increasingly reported in the medical field, and there is a likelihood they also occur in food production and manufacturing areas, there is a growing demand for the rapid in situ detection of DSBs and the identification of pathogens within DSBs. Raman microspectroscopy allows users to obtain spatially resolved information about the chemical composition of biofilms, and to identify microbial species. In this study, we investigated Staphylococcus aureus mono-species DSB on polyvinylchloride blanks and stainless steel coupons, and dual-species (S. aureus/Bacillus licheniformis) DSB on steel coupons. We demonstrated that Raman microspectroscopy is not only suitable for identifying specific species, but it also enables the differentiation of vegetative cells from their sporulated form. Our findings provide the first step towards the rapid identification and characterization of the distribution and composition of DSBs on different surface areas

    CYP2D6 gene variants: association with breast cancer specific survival in a cohort of breast cancer patients from the United Kingdom treated with adjuvant tamoxifen.

    Get PDF
    INTRODUCTION: Tamoxifen is one of the most effective adjuvant breast cancer therapies available. Its metabolism involves the phase I enzyme, cytochrome P4502D6 (CYP2D6), encoded by the highly polymorphic CYP2D6 gene. CYP2D6 variants resulting in poor metabolism of tamoxifen are hypothesised to reduce its efficacy. An FDA-approved pre-treatment CYP2D6 gene testing assay is available. However, evidence from published studies evaluating CYP2D6 variants as predictive factors of tamoxifen efficacy and clinical outcome are conflicting, querying the clinical utility of CYP2D6 testing. We investigated the association of CYP2D6 variants with breast cancer specific survival (BCSS) in breast cancer patients receiving tamoxifen. METHODS: This was a population based case-cohort study. We genotyped known functional variants (n = 7; minor allele frequency (MAF) > 0.01) and single nucleotide polymorphisms (SNPs) (n = 5; MAF > 0.05) tagging all known common variants (tagSNPs), in CYP2D6 in 6640 DNA samples from patients with invasive breast cancer from SEARCH (Studies of Epidemiology and Risk factors in Cancer Heredity); 3155 cases had received tamoxifen therapy. There were 312 deaths from breast cancer, in the tamoxifen treated patients, with over 18000 years of cumulative follow-up. The association between genotype and BCSS was evaluated using Cox proportional hazards regression analysis. RESULTS: In tamoxifen treated patients, there was weak evidence that the poor-metaboliser variant, CYP2D6*6 (MAF = 0.01), was associated with decreased BCSS (P = 0.02; HR = 1.95; 95% CI = 1.12-3.40). No other variants, including CYP2D6*4 (MAF = 0.20), previously reported to be associated with poorer clinical outcomes, were associated with differences in BCSS, in either the tamoxifen or non-tamoxifen groups. CONCLUSIONS: CYP2D6*6 may affect BCSS in tamoxifen-treated patients. However, the absence of an association with survival in more frequent variants, including CYP2D6*4, questions the validity of the reported association between CYP2D6 genotype and treatment response in breast cancer. Until larger, prospective studies confirming any associations are available, routine CYP2D6 genetic testing should not be used in the clinical setting.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Suggestion for linkage of chromosome 1p35.2 and 3q28 to plasma adiponectin concentrations in the GOLDN Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adiponectin is inversely associated with obesity, insulin resistance, and atherosclerosis, but little is known about the genetic pathways that regulate the plasma level of this protein. To find novel genes that influence circulating levels of adiponectin, a genome-wide linkage scan was performed on plasma adiponectin concentrations before and after 3 weeks of treatment with fenofibrate (160 mg daily) in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) Study. We studied Caucasian individuals (n = 1121) from 190 families in Utah and Minnesota. Of these, 859 individuals from 175 families had both baseline and post-fenofibrate treatment measurements for adiponectin. Plasma adiponectin concentrations were measured with an ELISA assay. All participants were typed for microsatellite markers included in the Marshfield Mammalian Genotyping Service marker set 12, which includes 407 markers spaced at approximately 10 cM regions across the genome. Variance components analysis was used to estimate heritability and to perform genome-wide scans. Adiponectin was adjusted for age, sex, and field center. Additional models also included BMI adjustment.</p> <p>Results</p> <p>Baseline and post-fenofibrate adiponectin measurements were highly correlated (r = 0.95). Suggestive (LOD > 2) peaks were found on chromosomes 1p35.2 and 3q28 (near the location of the adiponectin gene).</p> <p>Conclusion</p> <p>Two candidate genes, <it>IL22RA1 </it>and <it>IL28RA</it>, lie under the chromosome 1 peak; further analyses are needed to identify the specific genetic variants in this region that influence circulating adiponectin concentrations.</p

    Mechanical environment alters tissue formation patterns during fracture repair

    Full text link
    Fracture repair has previously been shown to be sensitive to mechanical environment, yet the specific relationship between strain character, magnitude and frequency, as well as other mechanical parameters, and tissue formation is not well understood. This study aimed to correlate strain distribution within the healing fracture gap with patterns of tissue formation using a rat model of a healing osteotomy subject to mechanical stimulation in bending. Finite element models based on realistic tissue distributions were used to estimate both the magnitude and spatial distribution of strains within the fracture gap. The spatial distribution of regenerating tissue was determined by microcomputed tomography and histology, and was confirmed using reverse transcription-polymerase chain reaction (RT-PCR). Results suggest that tensile strains suppress chondrogenesis during the mechanical stimulation period. After stimulation ends, however, tensile strains increased chondrogenesis followed by rapid bone formation. In contrast, in compressive environments, bone is formed primarily via intramembranous ossification. Taken together, these results suggest that intermittent tensile strains during fracture repair stimulate endochondral ossification and promote eventual bone healing compared to intermittent compressive strains and unstimulated fractures. Further understanding of these relationships may allow proposal of optimal therapeutic strategies for improvement of the fracture repair process. © 2004 Orthopaedic Research Society. Published y Elsevier Ltd. All rights reserved.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/34921/1/1100220523_ftp.pd

    Suppression of the Nrf2-Dependent Antioxidant Response by Glucocorticoids and 11β-HSD1-Mediated Glucocorticoid Activation in Hepatic Cells

    Get PDF
    Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a key transcription factor regulating a plethora of detoxifying enzymes and antioxidant genes involved in drug metabolism and defence against oxidative stress. The glucocorticoid receptor (GR) is a ligand-induced transcription factor involved in the regulation of energy supply for metabolic needs to cope with various stressors. GR activity is controlled by glucocorticoids, which are synthesized in the adrenal glands and regenerated mainly in the liver from inactive cortisone by 11β-hydroxysteroid dehydrogenase-1 (11β-HSD1).; Using transfected HEK-293 cells and hepatic H4IIE cells we show that glucocorticoids, activated by 11β-HSD1 and acting through GR, suppress the Nrf2-dependent antioxidant response. The expression of the marker genes NQO1, HMOX1 and GST2A was suppressed upon treatment of 11β-HSD1 expressing cells with cortisone, an effect that was reversed by 11β-HSD1 inhibitors. Furthermore, our results demonstrate that elevated glucocorticoids lowered the ability of cells to detoxify H(2)O(2). Moreover, a comparison of gene expression in male and female rats revealed an opposite sexual dimorphism with an inverse relationship between 11β-HSD1 and Nrf2 target gene expression.; The results demonstrate a suppression of the cellular antioxidant defence capacity by glucocorticoids and suggest that elevated 11β-HSD1 activity may lead to impaired Nrf2-dependent antioxidant response. The gender-specific differences in hepatic expression levels of 11β-HSD1 and Nrf2 target genes and the impact of pharmacological inhibition of 11β-HSD1 on improving cellular capacity to cope with oxidative stress warrants further studies in vivo
    • …
    corecore